Expressiveness and Complexity of Generic Graph Machines
نویسندگان
چکیده
منابع مشابه
Expressiveness and complexity of graph logic
We investigate the complexity and expressive power of a spatial logic for reasoning about graphs. This logic was previously introduced by Cardelli, Gardner and Ghelli, and provides the simplest setting in which to explore such results for spatial logics. We study several forms of the logic: the logic with and without recursion, and with either an exponential or a linear version of the basic com...
متن کاملthe effect of task complexity on lexical complexity and grammatical accuracy of efl learners’ argumentative writing
بر اساس فرضیه شناخت رابینسون (2001 و 2003 و 2005) و مدل ظرفیت توجه محدود اسکهان (1998)، این تحقیق تاثیر پیچیدگی تکلیف را بر پیچیدگی واژگان و صحت گرامری نوشتار مباحثه ای 60 نفر از دانشجویان زبان انگلیسی بررسی کرد. میزان پیچیدگی تکلیف از طریق فاکتورهای پراکندگی-منابع تعیین شد. همه ی شرکت کنندگان به صورت نیمه تصادفی به یکی از سه گروه: (1) گروه موضوع، (2) گروه موضوع + اندیشه و (3) گروه موضوع + اندی...
15 صفحه اولExpressiveness and Utility of Generic Representation Schemes
We describe how problems can be solved by “compiling” them to a general-purpose representation scheme such as SAT or PseudoBoolean (PB). We discuss why PB is a so much more expressive and better language than SAT for problems that involve any arithmetic reasoning. We describe PARIS, a program that solves decision problems expressed in PB, that is based on an adaptation of the best SAT solvers. ...
متن کاملBehavior and Expressiveness of Persistent Turing Machines
Persistent Turing machines (PTMs) are multitape machines with a persistent worktape preserved between successive interactions. They are a minimal extension of Turing machines (TMs) that express interactive behavior. Their behavior is characterized by input-output streams; PTM equivalence and expressiveness are defined relative to its behavior. Four different models of PTM behavior are examined:...
متن کاملQuantified CTL: Expressiveness and Complexity
While it was defined long ago, the extension of CTL with quantification over atomic propositions has never been studied extensively. Considering two different semantics (depending whether propositional quantification refers to the Kripke structure or to its unwinding tree), we study its expressiveness (showing in particular that QCTL coincides with Monadic Second-Order Logic for both semantics)...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Theory of Computing Systems
سال: 1998
ISSN: 1432-4350,1433-0490
DOI: 10.1007/s002240000087